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I. INTRODUCTION

The detailed understanding of nonlinear effects in optical
systems has been the goal of many research activities in re-
cent years[1]. With the rapid development of both powerful
and controllable light sources, many challenging effects were
discovered just by increasing the intensity. For example, by
enhancing the intensity of the optical field in a waveguide,
self-focusing due to the optical Kerr effect can change the
guiding properties dramatically. This self-focusing process is
basically described by the nonlinear Schrödinger(NLS)
equation, which governs the evolution of the slowly varying
envelope of the electric field, and it can partly be “tamed” by
coupling the beam with an appropriate potential[2–4].

Besides nonlinear optics, elementary excitations in cold
dilute atom gases and the formation of Bose-Einstein con-
densates(BEC’s) have attracted interest in the past decade
[5]. In the mean-field approximation, the dynamics of BEC’s
is described by the Gross-Pitaevskii equation, which governs
the macroscopic BEC wave function. This equation is noth-
ing else but a NLS equation supplemented by an unbounded
quadratic-in-space potential. Here, the potential models the
magnetic trap, confining bosons into a condensate. For atoms
with attractive interactions, BEC’s can undergo sequences of
collapses[6], similar to the self-focusing phenomenon in op-
tics. However, for suitable numbers of particles and/or dif-
ferent interactions, long-living stationary-wave structures
such as ground states(single humped) or vortices(with an-
gular momentum; see, e.g.,[7]) can form in the condensates.

The above systems promote the emergence of a rich va-
riety of nonlinear objects, the stability of which crucially
depends on the trap potential and the number of quanta in-
volved in their formation(see for example[8] for one-
dimensional systems). As far as the physics of BEC’s is con-
cerned, recent studies focused on the stability of ground
states as well as vortices by means of perturbation theory
(see, e.g., Refs.[9,10]). The stability of similar trapped struc-
tures was also investigated in the framework of nonlinear
optics in, e.g.,[2,3]. In particular, it was observed that single

(unit) vortices with small enough power could be stable in a
parabolic trap and preserve their radial shape, apart from an
azimuthal rotation[3].

In spite of these studies, we believe that a simple, trac-
table criterion for the stability of higher-order nonlinear
bound states for NLS-type systems involving a trap(or an
“attractive” potential) is still missing. By higher-order bound
states, we mean stationary-wave solutions of the NLS equa-
tion, with a finite power above that of the unique, positive,
and symmetric(localized) ground state with the lowest
power and azimuthal zero eigenvalue. Single-charged as well
as multicharged vortices and multihumped field distributions
belong to this class of stationary-wave solutions, which is
investigated here.

In this paper, we present an easy-to-usesufficientstability
criterion for low-power nonlinear bound states of NLS sys-
tems with an “attractive” potential. Knowledge of the spec-
trum of this potential is sufficient to determine the stability
of the nonlinear bound states in the limit of small powers.
Due to the generality of the equation under consideration,
our results are applicable on both weakly nonlinear guided
waves in optical fibers and the dynamics of BEC’s. More-
over, the theory can be applied in principle to conservative,
Hamiltonian systems of arbitrary dimensionality and an arbi-
trary shaped, but “attractive” potential. However, for the sake
of conciseness, we mainly concentrate on the case of a cir-
cularly symmetric fiber with focusing or defocusing cubic
nonlinearity.

The paper is organized as follows: In Sec. II, we deter-
mine the linear modes of the potential and their continuation
towards nonlinear bound states(“solitons”) for higher-power
levels. In Sec. III, we discuss the stability of these “solitons”
for low powers. Here we use the key property that the linear
modes of the potential are related to the eigenfunctions of the
linearized NLS operator, which determines the stability of
weakly nonlinear waves. More precisely, each of the linear
modes appears twice as an eigenfunction, but with shifted
eigenvalue. Whereas it is known that the resonance of two
linear localizedeigenfunctions can produce instabilities(see,
e.g., Refs.[10–12]), the present theory, instead, deals with
resonances betweenlocalizedeigenfunctions(discrete eigen-
values) anddelocalizedeigenfunctions(continuous eigenval-
ues). In Sec. IV, we propose a stability criterion for low-*Electronic address: stefan@pinet.uni-jena.de
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power nonlinear bound states, deduced from the existence of
the previous resonances. By analyzing the dependence of the
perturbation amplitudes on the growth rate, it is shown that
the criterion is indeed sufficient for stability. Finally, in Sec.
V our analytical arguments are double-checked by means of
a numerical stability analysis and by direct numerical simu-
lations.

II. LINEAR MODES AND NONLINEAR BOUND STATES

To start with, let us consider the propagation equation for
the field envelopeEsr ,w ,zd in an optical waveguide with
refractive index distributionnsrd, limr→`nsrd=nb, and a Kerr
nonlinearity[1]:

i
]

] z
E +

1

2k0
D'E + k0

n2uEu2

nb
E + k0

n − nb

nb
E = 0. s1d

For convenience, we have scaled the fieldE in such a way
that uEu2 corresponds to the optical intensity. Assuming that
both the linear and nonlinear induced index changesn−nb
and n2uEu2 are small compared to the mean indexnb, the
scalar approximation and the negligence of backward run-
ning field components are justified. In Eq.(1), k0 refers to the
carrier central wave number in the medium.

For technical convenience, we rescale Eq.(1) to dimen-
sionless quantities. The transverse coordinater is scaled to
the extension of the waveguider0, and we normalize the
coefficients in front of both diffraction term and nonlinearity
to unity. With R=r / r0, F=w, Z=z/2k0r0

2, ands=sgnsn2d the
two-dimensional(2D) NLS equation for the wave function
C=k0r0sÎ2un2u /nbdE reads

i
]

] Z
C + D'C + suCu2C − VC = 0, s2d

with an “attractive” bounded potentialV=2k0
2r0

2snb−nd /nb,
satisfying limR→`V=0.

The potentialV is assumed to support several localized
linear modesQ j ,MsRdexpsiMF+ ig j ,MZd, M = . . . ,−1,0,1, . . .,
j =1,2, . . ., with discrete eigenvaluesg j ,M ordered as
g j1,M .g j2,M ⇔ j1, j2. The eigenfunctionsQ;Q j ,M obey

gQ = D̂MQ,

D̂M =
1

R

]

] R
SR

]

] R
D −

M2

R2 − V, s3d

whereumin Vu.g j ,M .0. Forg=gcø0 in Eq. (3) we have a
continuum of delocalized(radiative) modesQgc,M

. Further
on, we consider a class of potentialsV, for which the discrete
spectrum is not degenerated, apart from the trivial degenera-
tion that follows from the elementary symmetryM→−M.

In the following, we use a radial step potential[VsR
ø1d=−V0, VsR.1d=0] as an illustrative example, which
models the most common case of an optical fiber. The depth
of the potentialV0 determines the number and magnitude of
the discrete eigenvaluesg j ,M and the domain of the con-
tinuum. Figure 1 shows an example for the discrete(local-

ized modes) and continuous(delocalized modes) eigenvalues
of Eq. (3).

From each of the localized modesQ j ,M a branch of non-
linear bound statesUj ,MsRdexpsiMF+ ib j ,MZd of Eq. (2)
emanates[3,13,14]. One can interpret the localized linear
modes Q j ,M as “solitons” with zero power P
=2pe uUj ,Mu2RdR or, equivalently, corresponding tos=0
(see Fig. 2). Because bothU and Q are solutions of real-
valued differential equations, we consider each of them as
being real and therefore unique.

By means of functional relations(see, e.g., Ref.[3]), non-
linear bound statesU;Uj ,M of Eq. (2) can easily be proved
to satisfy

b =

sE U4RdR−E s¹Ud2RdR−E U2VRdR

E U2RdR

, s4d

where s¹Ud2=fs] /]RdUg2+sM2/R2dU2 and b;b j ,M. One
sees immediately that fors.0 we can expectb.g j ,M and
s,0 indicatesb,g j ,M.

III. STABILITY ANALYSIS

According to the standard procedure for linear stability
analysis we introduce a small perturbationdU on the nonlin-
ear bound stateU. We plug

FIG. 1. Discrete eigenvaluesg j ,M of Eq. (3) and radial shapes of
the corresponding localized linear modesQ j ,M. The given step po-
tential supports four localized modes.

FIG. 2. “Soliton” power P versus parameterb (s= +1 solid
lines;s=−1 dashed lines): The four discrete linear modesQ j ,M can
be seen as “solitons” with zero power.
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C = sU + dUdexpsiMF + ibZd s5d

into Eq. (2) and linearize with respect to the perturbation.
The resulting evolution equation for the perturbationdU is
given by

i
]

] Z
dU − bdU − VdU + 2sU2dU + sU2dU*

+
1

R

]

] R
SR

]

] R
DdU +

1

R2S ]

] F
+ iMD2

dU = 0. s6d

With the ansatz

dUsR,F,Zd = dU1sRdexpsimF + ilZd

+ dU2
*sRdexps− imF − il*Zd, s7d

we then derive the eigenvalue problem

L̂SdU1

dU2
D = lSdU1

dU2
D , s8d

wheredU1 anddU2 are independent complex functions and

L̂ = SD̂M+m − b + 2sU2 sU2

− sU2 − D̂M−m + b − 2sU2
D .

Since the resulting linear operatorL̂ is real, we expect pairs
of eigenvalues(l, l*). If for a given bound stateU all eigen-
valuesl of Eq. (8) are real numbers, we callU orbitally
stable; otherwise, we call it linearly unstable.

Here we address the stability of these nonlinear bound
states for low powersP. For s.0, this is the only regime
where we can expect stability, because for high enough pow-
ers the linear potential in Eq.(2) becomes negligible, and all
bound states of the resulting two-dimensional NLS equation
are unstable, by either spreading or collapsing to a singular-
ity [15]. So the question we want to answer is: does a linear
modeQ j ,M become always unstable if we increase the power
or can it be continued into a nonlinear stateUj ,M remaining
stable up to a certain threshold power? In order to shed light
on this issue, we split the linear operator of the eigenvalue

problem, Eq.(8), into two operatorsL̂=Ĥ+sN̂, where

Ĥ = SD̂M+m − b 0

0 − D̂M−m + b
D s9d

is self-adjoint and

N̂ = S 2U2 U2

− U2 − 2U2D s10d

contains the dependence on the nonlinear bound stateU. So

for small powersN̂ acts as a perturbation onĤ. For P=0 (or

s=0) we haveL̂=Ĥ, b=g j ,M and each row of Eq.(8) is

equivalent to Eq.(3). Hence, in the spectrum of operatorĤ,
all the linear modes of the waveguide structure are repro-
duced twice. The solutions of the eigenvalue problem

ĤSdU1

dU2
D = lSdU1

dU2
D s11d

are the localized eigenfunctions(modes of the discrete spec-

trum of Ĥ) defined as

SQk,M8

0
D, l = gk,M8 − b, m= M8 − M ,

S 0

Qk,M8
D, l = − gk,M8 + b, m= M − M8,

and the delocalized eigenfunctions(radiative modes of the

continuous spectrum ofĤ) defined as

SQgc,M8

0
D, l = gc − b, m= M8 − M ,

S 0

Qgc,M8
D, l = − gc + b, m= M − M8,

where still b=g j ,M. Note that the angular momentumM8
consists of the amount of both momentaM (soliton) andm
(perturbation) fixed by our ansatz[Eqs.(5) and (7)].

If lø−b or lùb, we always find a delocalized eigen-
function of Eq.(11), either

SQgc,M8

0
D or S 0

Qgc,M8
D .

Besides, for a certain range of potential depths, some of the
discrete eigenvaluesgk,M8 of Eq. (3) lie in the domain 2b
−gk,M8,0, so that thediscreteeigenvaluesl= ± sgk,M8−bd
of the localized eigenfunctions

S 0

Qk,M8
D and SQk,M8

0
D

are embedded in thecontinuousparts of the spectrum. In
such a configuration, there exists degeneration between a
continuous and a discrete eigenvalue. This type of degenera-
tion will be crucial throughout our analysis.

Before we go on and look at the effects of the perturbation

N̂, it might be helpful to illustrate these considerations with
the example of Fig. 1. As mentioned above, with knowledge
of the eigenvalues of Eq.(3) it is easy to construct the spec-

trum of the operatorĤ: each eigenvalueg in Eq. (3) creates
a pair of eigenvaluesl=g−b and l=b−g in the spectrum

of Ĥ. Figure 3 shows the construction of the spectrum for
two different choices ofb. For the vortex state withb
=g1,±1 [see Fig. 3(a)], the discrete eigenvalues and the two
continua are clearly separated. The eigenvalues attached to

the left axis belong to the first row of operatorĤ, while those
appendant to the right axis belong to the second one. On the
contrary, for the multihumped state withb=g2,0 [see Fig.
3(b)], some of the discrete eigenvalues are now embedded in
the continuum. So formally we have a degeneration between
continuous and discrete eigenvalues. This degeneration is
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due to the fact that Eq.(11) is composed of twodecoupled
equations. When we introduce the perturbationN̂, the latter
property does no longer hold.

If we start with the spectrum of the operatorĤ and switch
on the perturbationN̂, we expect that eigenvalues ofĤ will
shift. In particular, any degeneration between discrete eigen-
values and continuous eigenvalues, as described above,
should be lifted. Note that trivially degenerated eigenvalues
sM8→−M8d will not split, since the generic symmetry is not

changed by the nonlinearity. In contrast toĤ, the operatorL̂
is not self-adjoint, so eigenvalues can become complex. But

since L̂ is real, this can only happen in pairs(l, l*). This
property, therefore, implies that two eigenvalues have to be
degenerated first, before the pair can move to the complex
plane and destabilize the nonlinear bound state under con-
sideration. So, on the one hand, degeneration of two eigen-
values is necessary for destabilization. On the other hand, we
know about any possible degeneration just from looking at

the spectrum of the operatorĤ.
The same conclusion applies to more general nonlineari-

ties and arbitrary dimensionality in Eq.(2), provided the
equation features an “attractive” potential. The key point is

that eigenvalues of the perturbation operatorL̂ only appear in

pairs (l, l*). An operator splittingL̂=Ĥ+sN̂ as above is

always possible, whereĤ is independent of the nonlinear
bound state and self-adjoint. Then, our arguments using dis-

crete eigenvalues of operatorĤ embedded in the continuum

hold, because two eigenvalues of operatorL̂ have to be de-
generated first, before the pair can move to the complex
plane. The pairwise appearance of eigenvalues is, to our
knowledge, generic for conservative, Hamiltonian systems.

IV. STABILITY CRITERION FOR LOW-POWER BOUND
STATES

The above arguments allow us to formulate a stability
criterion for low-power nonlinear bound states of Eq.(2): If
a certain localized linear modeQ j0,M0

of Eq. (3) with eigen-
valueg j0,M0

fulfills

1

2
g j ,M , g j0,M0

for all j ,M , s12d

the corresponding nonlinear bound stateUj0,M0
is linearly

stable for small powers. On the contrary, if the criterion(12)
is not fulfilled, an arbitrary small nonlinearity can lift the

degeneracy in the spectrum of operatorL̂ by shifting the two
eigenvalues to the complex plane and leading thereby to the
instability of the nonlinear bound state. As a direct conse-
quence of this criterion, the ground state withb emanating
from g1,0 is always stable. Figure 4 shows an illustrative
example of this destabilization mechanism fors= +1. Note
that the criterion(12) applies to both focusingss.0d and
defocusingss,0d nonlinearities.

Before proceeding further, it might be helpful to illustrate
the criterion(12) in the picture of four-wave mixing. Here,
we consider partially degenerate four-wave mixing: A strong
“pump wave” with wave numberk1 creates two sidebands
located symmetrically at wave numbersk3 and k4, obeying
k1−k3=k4−k1, where we assume for definitenessk3,k4 (see,
e.g., Ref.[16]). Of course, the creation of sidebands requires
the existence of such waves in the medium. Brought forward
to our system, the “pump wave” corresponds to the low-
power nonlinear bound stateUj0,M0

<Q j0,M0
with k1=b

<g j0,M0
. Another mode of the potentialQ j ,M can only be

excited as a “third wave”sk3=g j ,Md if there is a matching
“fourth wave”, namely,Qgc,M

with wave numberk4=gc

=2g j0,M0
−g j ,M. If the stability criterion(12) is fulfilled, no

matching “fourth wave” exists. Hence, the “third wave” can-

FIG. 3. Eigenvalues of Eq.(11) for two different choices ofb.
Two spectra of Fig. 1 are superimposed. One spectrum is shifted by
an amount ofb downwards(left axis); the other one is mirrored
sl→−ld and shifted by an amount ofb upwards(right axis). In (a)
the discrete and the continuous eigenvalues stay separated; in(b)
we observe some discrete eigenvalues embedded in the continuum
(dashed lines).

FIG. 4. The degeneracy of the embedded discrete eigenvalues is
lifted by the cubic nonlinearityss= +1d; the eigenvalues move to
the complexl planesRl;Rel , Il; Imld. The nonlinear bound
state under consideration in this example is the multihumped state
emanating fromg2,0 sbùg2,0d.
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not grow and cause instability of the nonlinear bound state
Uj0,M0

. On the contrary, if the criterion is not fulfilled, we
always find a matching “fourth wave” in the continuum.

To clear up the effects of the nonlinearity, we consider the
asymptotics of unstable eigenmodes(eigenfunctions of op-

erator L̂ with complex eigenvaluel, Iml,0) with
limP→0Rel→l0.g j0,M0

and 0, uImlu!l0, Iml,0 (the
casel0,−g j0,M0

can be treated in a similar way). Since in
the linear limit[Eq. (11)] all eigenmodes are stable, we have
limP→0Iml→0. By solving Eq.(8) in the asymptotic regime
R→` and linearizing the exponential arguments with re-
spect to Iml we find

dU1 ,
1

ÎR
expFS− ÎRel + b − i

Iml

2ÎRel + b
DRG s13d

dU2 ,
1

ÎR
expFS− iÎRel − b +

Iml

2ÎRel − b
DRG , s14d

where both componentsdU1 and dU2 are localized(finite
power integral). This is worth noticing, since in contrast to
dU1, the componentdU2 is delocalized in the linear limit
Iml=0 (P=0 or s=0). Due to the nondiagonal elements of

the operatorN̂, we can conclude that bothdU1 anddU2 have
nonzero norm. More precisely, it is possible to show that

ImlE sudU1u2 − udU2u2dRdR= 0 s15d

(see the Appendix for details) and therefore

E udU1u2RdR=E udU2u2RdR=! 1. s16d

Henceforth the symbol =! signifies that the power integrals of
dU1 anddU2 can be set equal to unity without loss of gen-
erality, by virtue of the linear nature of the equations which
these perturbations satisfy. By doing so, Eq.(16) provides
useful information on the maximum of their amplitude in the
transverse plane. Together with the asymptotics[Eqs. (13)
and (14)], we are now able to evaluate the dependency of
maxudU1u2 and maxudU2u2 on uImlu!l0, which will allow us
to deduce further results.

A. Dependence of maxzdU1z2 on zImlz

Let us have a look at Eq.(13). Since the real part of the
exponent −ÎRel+bR is independent of Iml, we can con-
clude that dU1sRd<0 at large distancesR@1/ÎRel+b.
Hence, the entire “mass” ofdU1 is concentrated at finite

distances, whereUÞ0 andVÞ0. SinceeudU1u2RdR=! 1, we
have thus

maxudU1u2 < C, s17d

whereC is a nonzeroconstant independent of Iml.
Equation(17) implies that the criterion(12) is indeedsuf-

ficient for small powers: For a vanishing nonlinearity, we
have Iml=0. For continuity reasons, these unstable eigen-

modes must converge to alocalizedeigenfunction of the op-

erator Ĥ with discrete eigenvalue embedded in the con-
tinuum. Otherwise, maxudU1u2 would jump from CÞ0 to
zero for powerP→0, because delocalized eigenfunctions
cannot keep a finite power integral while having nonzero
amplitude. Conversely, since the perturbations become local-
ized in one component(dU1) and delocalized in the other
one (dU2) in the limit P→0, instability at low powersnec-
essarilystarts from discrete eigenvalues “embedded” in the

continuum of the operatorĤ. Furthermore, with this knowl-
edge, we can specify the above constantsl0=g j ,M −g j0,M0

andC=maxuQ j ,Mu2 with euQ j ,Mu2RdR=! 1.

B. Dependence of maxzdU2z2 on zImlz

For uImlu!l0 all the mass ofdU2 lies at large distances
R→`, and with Eq. (14) we are able to compute

eudU2u2RdR,1/uImlu. Since we have fixedeudU2u2RdR=! 1,
the previous estimate implies that

maxudU2u2 , uImlu. s18d

Besides, if we remember that Eq.(8) is a linear differential
equation, it is obvious that there exists a Green’s function
GsR,R8d with

dU2sRd =E GsR,R8dsUsR8d2dU1sR8dR8dR8, s19d

which means

maxudU2u , s maxU2. s20d

Hence, we obtain

ÎuImlu , s maxU2, s21d

so the growth rateuImlu of the unstable eigenmode is pro-
portional to the squared nonlinearity.

In order to express this dependency in terms of the “soli-
ton parameter”b, we may perform a perturbative analysis in
the limit us u !1, similarly to Refs.[9,10]. We expand the
nonlinear bound stateU as

U = Q + sUs1d + Oss2d s22d

and

b = g + sbs1d + Oss2d, s23d

whereQ;Q j0,M0
andg;g j0,M0

satisfy Eq.(3). Plugging the
ansatzc=U expsiM0F+ ibZd into Eq.(2), it is readily found
that

bs1d =
E Q4RdR

E Q2RdR

, max Q2. s24d

Hence, with Eq.(23) we have
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b − g , s max Q2. s25d

For smallusu, thus maxQ2,max U2 [see Eq.(22)], the non-
linearity depends on the “soliton parameter” as

s max U2 , b − g. s26d

Combining Eqs.(21) and (26) we get

uImlu , sb − gd2. s27d

The need that eigenvalues of operatorL̂ have to be degen-
erated first before moving to the complex plane and cause

instability yields a sufficient condition for stability of low-
power nonlinear bound states in the present framework.
However, determining compellable analytical arguments
showing that the embedded discrete eigenvalues of the op-

eratorĤ alwayslead to complex eigenvalues for the operator

L̂ (unstable eigenmodes) is still an open issue. Nevertheless,
in the numerical examples discussed below we always ob-
serve this destabilization mechanism.

V. NUMERICAL RESULTS

Let us return to our example, the radial step potential, and
check the above theoretical predictions. We will concentrate
on the “solitons” emanating fromg1,1 (vortex state) and from
g2,0 (multihumped state) (see Fig. 2). Figure 5 shows the
regions of degeneratedl of Eq. (11) for the three linear
modesQ1,0, Q1,1, and Q2,0. Up to a certain depth of the
confining potentialV, the stability criterion(12) is not ful-
filled for the higher-order modes. At this depth, the last “em-
bedded eigenvalue” leaves the continuum. In this context it
is important to point out that the above destabilization pro-
cess isnot due to weak linear guiding of the respective “soli-
ton.” If this were the case, we would observe a certain non-
zero critical power, below which the “soliton” would be
stable. In contrast to this scenario, the destabilization appears
for arbitrary small power.

Since the degeneration of the eigenvalues of Eq.(11) in-
volves the continuum, the related unstable eigenmodes are
stretched over a large area, especially for very small powers.
Therefore, conventional solver for Eq.(8), like, e.g., the
NAG routine F02ECF [17], failed due to the necessity of a
very large computational window. We worked around this
problem in solving Eq.(6) directly with a beam-propagation
method(Crank-Nicholson) and transparent boundary condi-
tions.

To confirm the results of our stability analyses, we present
full 2D simulations illustrating the decay of unstable low-
power vortex and multihumped “solitons.” It turns out that,
at least for the examples presented here, the final state is
correlated with the dominant unstable eigenmode(here the
ground state).

FIG. 5. Eigenvalueg versus the depth of the step potentialV for
the linear modesQ1,0, Q1,1, andQ2,0. Solid lines indicate a free-of-

degeneration spectrum of operatorĤ; domains with discrete eigen-
values embedded in the continuum are specified in dotted lines. The
dashed lines show the absolute values of the embedded eigenvalues
l of Eq. (11).

FIG. 6. Soliton powerP versus soliton parameterb for the
vortex stateM =1 (solid line). The dashed line shows the computed
growth rateuImlu of the unstable eigenmode. If(a) 1

2g1,0−g1,1ù0,
the vortex nonlinear bound state is unstable, whereas with(b)
1
2g1,0−g1,1ø0 it is stable for small powers.

FIG. 7. The vortex nonlinear bound stateM =1, s=1: instability
for b=2.3 andV0=8 (row I); and stability forb=11 andV0=20
(row II).
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A. Vortex state

We first discuss the vortex state. If 6,V0,13.6 (bound-
aries here correspond to the lower and upper bounds in Fig.
5 for eigenvalue degeneracy in the limitP→0), we find
1
2g1,0.g1,1. Hence, the degenerated eigenvalues of Eq.(11)
are ±sg1,0−g1,1d. So we can guess that the low-power non-
linear vortex state in this range ofV0 has an unstable eigen-
mode with m= ±1, so that either limP→0dU1=Q1,0 (M +m
=0) or limP→0dU2=Q1,0 (M −m=0). The real part of this
complex eigenvalue is approximatelyuRelu<g1,0−g1,1.
With a deeper potential than the critical valueV0=13.6, this
instability is expected to disappear. In order to check these
predictions, a numerical stability analysis of the vortex state
was performed forV0=8 andV0=20. As expected, forV0
=20 we observed a stable region of the vortex branch for
small powers, whereas forV0=8 the branch becomes imme-
diately unstable when the nonlinearity comes into play(see
Fig. 6). We successfully checked numerically the “instability
onset value” for the depth of the potentialV0=13.6. The
“instability onset value” and the value at which the first dis-
crete eigenvalue just touches the continuum were observed
to coincide.

As far as direct simulations are concerned, the first row in
Fig. 7 shows the decay of the vortex “soliton” withb=2.3
from the potential depth selected in Fig. 6(a). Perturbed with
1% random amplitude noise atZ=0, the growing unstable
eigenmode(m=1) destroys the “doughnut shape” of the vor-
tex. At Z=77.5 andZ=78.3, respectively, we show two snap-
shots of the asymptotic behavior, which consists in a spin-
ning single-hump solution with a periodDZ<1.7. This
single hump is nothing else but the nonlinear ground state
U1,0, where additional rotation is induced by a stable eigen-
mode withm=1 andl=2p /DZ<3.7. Because we are in the
low-power regime, we can identify the connection of this
eigenmode withQ1,1, the linear vortex state in Eq.(3). In-
deed, forV0=8 we findl<3.7<g1,0−g1,1 (see also Fig. 5).
The second row of Fig. 7 displays the numerical verification
of the stability predicted for the vortex state withV0=20.

B. Multihumped state

In the case of the multihumped state, Fig. 5 shows that,
for 16,V0,31.2, Eq.(11) features four degenerated eigen-
values ±sg1,0−g2,0d related to the ground stateQ1,0, and
±sg1,1−g2,0d related to the vortex stateQ1,1. For potentials
deeper thanV0=31.2 the degeneration of the vortex state first
vanishes, and withV0.39.2 the stability criterion(12) be-
comes fulfilled. Again, we can confirm these behaviors with
a numerical stability analysis(see Fig. 8). For V0=20 the
multihumped branch is unstable for arbitrary small powers
due to two unstable eigenmodes. The eigenmode linked to
the ground statesm=0d possesses a substantially larger
growth rate, so we can expect this one to play the crucial role
in the decay of the multihumped nonlinear bound state(see
full 2D simulations below). The unstable eigenmode associ-
ated with the vortex state disappears for a deeper potential
sV0=36d, and choosingV0=44 we observe stability for a
quite large range of soliton power.

FIG. 8. Soliton powerP versus parameterb for the multi-
humped stateM =0 (solid line). The dashed lines show the com-
puted growth ratesuImlu of the unstable eigenmodes. If(a) 1

2g2,0

−g1,1ù0 and 1
2g2,0−g1,0ù0, the nonlinear bound state has two

unstable eigenmodes, whereas with(b) 1
2g2,0−g1,1ø0 and 1

2g2,0

−g1,0ù0, it has one unstable eigenmode(m=0). In the case of(c)
1
2g2,0−g1,1ø0 and 1

2g2,0−g1,0ø0, the multihumped state is stable
for small powers.

FIG. 9. The multihumped nonlinear bound stateM =0, s=1:
instability for b=4.3 andV0=20 (row I); instability for b=16 and
V0=36 (row II); and stability forb=24 andV0=44 (row III ).
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The decay of the multihumped “solitons” produced by
the potentials used in Figs. 8(a) and 8(b) with b=4.3 and
b=16 is shown in row I and row II of Fig. 9, respectively.
Again we end up with the stable ground-state breathing
due to stable eigenmodes withm=0. The periods of oscilla-
tion, DZ<0.45 andDZ<0.35, between the two extremal
beam shapes shown in the respective last two pictures of the
rows are compatible with the eigenvaluesl=14 andl=18:
we retrieve these values as the differenceg1,0−g2,0 comput-
able from Fig. 5. As expected, a sufficient depthsV0=44d of
the potential stabilizes the higher-order nonlinear bound state
with M =0 (last row).

VI. CONCLUSION

In summary, we have presented a sufficient stability cri-
terion for weakly nonlinear bound states, which only in-
volves the linear eigenvalue problem(P→0 or s=0).
Simple knowledge of the eigenvalues associated with the
linear modes of the potentialV allows us to predict the sta-
bility of the nonlinear bound states of the extended NLS
equation(2). In spite of the fact that the criterion is valid for
low-power solitons only, the example of a step potential
shows that the present results may hold for wider ranges of
power, both for focusing and defocusing nonlinearities.

APPENDIX: COMPONENTS OF UNSTABLE MODES HAVE EQUAL NORM

We prove the relation ImlesudU1u2− udU2u2dRdR=0 [Eq. (15)], using the notationsa=dU1, b=dU2, I0=sU2, and l=l8
+ il9 for convenience:

l9E suau2 − ubu2dRdR=
1

2i
E hfa*il88a − c.c.g − fb*il88b − c.c.gjRdR

=
1

2i
E hfa*sD̂M+m − b − l8 + 2I0da + a*I0b − c.c.g− fb*s− D̂M−m + b − l8 − 2I0db − b*I0a − c.c.gjRdR

=
1

2i
E HFa* 1

R

]

] R
SR

]

] R
Da + a*I0b − c.c.G+ Fb* 1

R

]

] R
SR

]

] R
Db + b*I0a − c.c.GJRdR,

where we used Eq.(8) and the fact that the quantitiesl8, b, V, I0, andM2/R2 are real valued. In the above equation, it is easy
to see thatfa*I0b−c.c.g+fb*I0a−c.c.g=0, which leaves us with the task to show that

E F f* ]

] R
SR

]

] R
D f − f

]

] R
SR

]

] R
D f*GdR= 0,

where eitherf =a or f =b. Since limR→`f ,]Rf =0, integration by parts in both terms immediately shows the desired result.
Similar integral relations were previously established in[12], in order to prove that a resonance of two localized eigen-

modes produce soliton instability in the context of the parametrically driven NLS equation.
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