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Stability of weakly nonlinear localized states in attractive potentials
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We analyze the stability of bound states to the nonlinear Schrédinger equation with an “attractive” linear
potential and a cubic nonlinearity of arbitrary sign. A sufficient stability criterion is derived, which only
requires knowledge of the linear modes of the potential. The results are double-checked numerically for the
step-index optical fiber. An estimate of the growth rate versus nonlinearity is established in the limit of weak
power.
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I. INTRODUCTION (unit) vortices with small enough power could be stable in a

) ) ) ) ~ parabolic trap and preserve their radial shape, apart from an
The detailed understanding of nonlinear effects in opticagzimuthal rotatior{3].

systems has been the goal of many research activities in re- |n Spite of these studies, we believe that a Simp|e7 trac-
cent yearg1]. With the rapid development of both powerful table criterion for the stability of higher-order nonlinear
and controllable light sources, many challenging effects wergound states for NLS-type systems involving a tfap an
discovered just by increasing the intensity. For example, byattractive” potentia) is still missing. By higher-order bound
enhancing the intensity of the optical field in a waveguide states, we mean stationary-wave solutions of the NLS equa-
self-focusing due to the optical Kerr effect can change thdion, with a finite power above that of the unique, positive,
guiding properties dramatically. This self-focusing process isind symmetric(localized ground state with the lowest
basically described by the nonlinear SchrédingBiLS) power and azimuthal zero eigenvalue. Single-charged as well
equation, which governs the evolution of the slowly varying@s multicharged vortices an(_JI multihumped fiel_d distribl_Jtion_s
envelope of the electric field, and it can partly be “tamed” bybelong to this class of stationary-wave solutions, which is
coupling the beam with an appropriate potenfizt4]. investigated here. . .

Besides nonlinear optics, elementary excitations in cold N this paper, we present an easy-to-gaéicientstability
dilute atom gases and the formation of Bose-Einstein cong'iterion for low-power nonlinear bound states of NLS sys-
densategBEC’s) have attracted interest in the past decadd€™S vrt?}_an attra_ctll\_/e p?fye.nnal. Knowledge 0;] the sp_ﬁc—
[5]. In the mean-field approximation, the dynamics of BEC’SUHEeO nt)r:ﬁnp)e(;tfr[;%inlj ztjatlecslei?lt ttr?edl?rt:i;nc])lpgr;atlel ;tgvt\)lgg
e el it 90V Bue o he generalty o te cauaton under consceratr
) . : our results are applicable on both weakly nonlinear guided
ing else but a NLS equation supplemented by an unbound

dratic-i Al H h ial models th aves in optical fibers and the dynamics of BEC’s. More-
quadratic-in-space potential. Here, the potential models t Bver, the theory can be applied in principle to conservative,
magnetic trap, confining bosons into a condensate. For ato

MFamiltonian systems of arbitrary dimensionality and an arbi-

with attractive interactions, BEC's can undergo sequences i, shaped, but “attractive” potential. However, for the sake
collapseg6], similar to the self-focusing phenomenon in 0p- ¢ ¢onciseness, we mainly concentrate on the case of a cir-

tics. Ho_wever, .for sunable. U“mbefs. of particles and/or dlf'cularly symmetric fiber with focusing or defocusing cubic
ferent interactions, long-living stationary-wave Strucwresnonlinearity

such as ground stat¢single humpeylor vortices(with an- The paper is organized as follows: In Sec. I, we deter-

guI%r] mokr)nentum; see, e.g7]) can gorm in the condfnsa}te;]s. mine the linear modes of the potential and their continuation
_The above systems promote the emergence of & rich Vag,arqs nonlinear bound stat@'solitons”) for higher-power
riety of nonlinear objects, the stability of which crucially o615 n Sec. 111, we discuss the stability of these “solitons”
delper&d§ onhthe ftrap potential afnd the nurlntgerfof quanta ing 10w powers. Here we use the key property that the linear
\ép ved In tl er ormatu;n(see hor rt]exa_mpef[éEg'r ON€- " modes of the potential are related to the eigenfunctions of the
Imensional systemsAs far as the physics of BEC'S Is cOn- jinearizeq NLS operator, which determines the stability of
cerned, recent studies focused on the stability of groungjeayjy nonlinear waves. More precisely, each of the linear

states as well as vortices by Imeans.of. perturbation theo%odes appears twice as an eigenfunction, but with shifted
(see, e.g., Ref$9,10)). The stability of similar trapped struc-  gjgenyajue. Whereas it is known that the resonance of two

t““?s was also |nvest|ga§ed In Fhe framework of nor?“ne""rlinearIocalizedeigenfunctions can produce instabilitisee,
optics in, e.g.[2,3]. In particular, it was observed that single

e.g., Refs[10-12), the present theory, instead, deals with
resonances betwedwncalizedeigenfunctiongdiscrete eigen-
valueg anddelocalizeceigenfunctiongcontinuous eigenval-
*Electronic address: stefan@pinet.uni-jena.de ues. In Sec. IV, we propose a stability criterion for low-
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power nonlinear bound states, deduced from the existence of 201
the previous resonances. By analyzing the dependence of the o 5
perturbation amplitudes on the growth rate, it is shown that N ®
the criterion is indeed sulfficient for stability. Finally, in Sec. Yiss

V our analytical arguments are double-checked by means of ]

a numerical stability analysis and by direct numerical simu- 0 V //I/////
lations. /wntnuum/ ;
“ @ h

V(R <1)=-20
V(R>1)=0

x\

II. LINEAR MODES AND NONLINEAR BOUND STATES -20-

To start with, let us consider the propagation equation for FIG. 1. Discrete eigenvalueg v of Eq.(3) and radial shapes of
the field envelopeE(r, ¢,2) in an optical waveguide with the corresponding localized linear modegy. The given step po-
refractive index distributiom(r), lim, ..n(r)=n,, and a Kerr  tential supports four localized modes.
nonlinearity[1]:

£ ized modepand continuousgdelocalized modesigenvalues
|—E+—A E + kg—2—- 2| | E+ |<0n Me_g. (1) ©OfEA®.
dz  2kg From each of the localized modé} y a branch of non-
linear bound stated); y(RiexpiM®+ig; yZ) of Eq. (2)
emanateq3,13,14. One can interpret the localized linear
modes ©®., as “solitons” with zero power P

For convenience, we have scaled the fielih such a way
that |E|?> corresponds to the optical intensity. Assuming that

both the linear and nonlinear induced index changes,, =2 [|U 1 RdR or, equivalently, corresponding te-=0
= M :

2 ;
and nylE| are smgll compared to .the mean inday the (see Fig. 2 Because bothJ and ® are solutions of real-
scalar approximation and the negligence of backward run:

S S valued differential equations, we consider each of them as
i fekd components e st I &0 101612 0 1 eing rel and herfor e,
For technical convenience, we rescale Eb) to dimen- . By means of functional relatiorisee, e.g., Re[B]), non-
. " ’ L linear bound stated =U, ,, of Eq. (2) can easily be proved
sionless quantities. The transverse coordimaie scaled to to satisfy )
the extension of the waveguidg, and we normalize the
coefficients in front of both diffraction term and nonlinearity

to unity. With R=r/ry, ® =, Z=2/2kyr2, ando=sgr(n,) the
two-dir);\ensional(ZDo) NLg equatiokrgJ for the Wase function Uf U4RdR_f (VU)ZRdR_f U*VRdR
W =koro(v2|n,|/Ny)E reads B= N )
5 f “RdR
ia—Z\II+AL\If+a-|\If|2\If—V\If:O, 2)

where (VU)?=[(9/ IRU?+(M?/R?)U? and B=B; . One
sees immediately that far>0 we can expecB> y; v and
d0'<0 indicatesf <y, m

with an “attractive” bounded potentialf=2k3r3(n,—n)/n,,
satisfying liny_,.,V=0.

The potentialV is assumed to support several localize
linear mode®); y(Rexp(iMd+iy; y2), M=...,-1,0,1,...,
j=1,2,..., with discrete eigenvaluesy;) ordered as

. - . - lll. STABILITY ANALYSIS
YipM= Yi,m < J1<]2. The eigenfunction®) = 0; \ obey

According to the standard procedure for linear stability

Y9 =Dy0, analysis we introduce a small perturbati@d on the nonlin-
ear bound stat&). We plug
D —li<Ri>—M—2—V 3)
M~ ’

RIR\ 9R/ R? 01 FR=1- v,
where[min V| >y, y>0. Fory=v,<0 in Eq.(3) we have a \ [V(R>1)=0 Uz
continuum of delocalizedradiativg modes®,, . Further 60'\\
on, we consider a class of potenti&sfor which the discrete i AN
spectrum is not degenerated, apart from the trivial degenera- 30+
tion that follows from the elementary symmet§— —M. N

In the following, we use a radial step potentif(R o+ | | - ;
<1)=-V,, V(R>1)=0] as an illustrative example, which Ovphis T Mo 20 40

models the most common case of an optical fiber. The depth P

of the potentiaV, determines the number and magnitude of FIG. 2. “Soliton” powerP versus parameteg (o=+1 solid
the discrete eigenvalueg;y and the domain of the con- lines;o=-1 dashed lings The four discrete linear mode; y can
tinuum. Figure 1 shows an example for the discigdeal- be seen as “solitons” with zero power.
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T =(U+ sU)expiMd +iB2) (5)

into Eq. (2) and linearize with respect to the perturbation.

The resulting evolution equation for the perturbati@d is
given by

a *
iﬁ—Z(SU—Béu—V&J+2(rU26U+oU25U
+li<Ri>5U+i<i+iM)25U-0 (6)
IR R\ g o
With the ansatz

SUR®,2) = 8U;(Riexp(im® +irZ)
+ 8U,(R)exp(— im® —ir"2), (7)

we then derive the eigenvalue problem

EE) .

where dU; and 6U, are independent complex functions and

[ = (I:A)M+m_B+20'U2

oU? )
- U2 ~ DByt B-20U2)

Since the resulting linear operaﬂAJris real, we expect pairs
of eigenvaluegh, \"). If for a given bound stat® all eigen-

values\ of Eq. (8) are real numbers, we call orbitally
stable; otherwise, we call it linearly unstable.

PHYSICAL REVIEW E 70, 016614(2004)

~ [ 6Uq oU,

H =\ (11
oU, oU,

are the localized eigenfunctioisodes of the discrete spec-

trum of H) defined as

O v/
( I;M ), )\:’yk’Mr_B, m:MI_M,

0
( ) A== yow +B M=M-M’,
®k,M’

and the delocalized eigenfunctioisdiative modes of the
continuous spectrum dfl) defined as

0.
(E’M ) A=y B, M=M'-M,

0
( ) N=—y+B mM=M-M’,
®YC1M/

where still 5=7v; . Note that the angular momentum’
consists of the amount of both momema(soliton) andm
(perturbation fixed by our ansatfEqgs.(5) and(7)].

If A\<-pB or A=, we always find a delocalized eigen-
function of Eq.(11), either

or .
0 @70,\,,,

Here we address the stability of these nonlinear bound€sides, for a certain range of potential depths, some of the

states for low power®. For >0, this is the only regime

discrete eigenvaluegy . of Eq. (3) lie in the domain B

where we can expect stability, because for high enough pow= ¥m <0, so that thediscreteeigenvalues\ =+ (yw: = 8)
ers the linear potential in E¢2) becomes negligible, and all Of the localized eigenfunctions

bound states of the resulting two-dimensional NLS equation
are unstable, by either spreading or collapsing to a singular-
ity [15]. So the question we want to answer is: does a linear

an
Oxmr 0

mode®, y become always unstable if we increase the powe s empedded in theontinuousparts of the spectrum. In

or can it be continued into a nonlinear statg,, remaining

stable up to a certain threshold powe

such a configuration, there exists degeneration between a

r? Inorder to shed light,ninyous and a discrete eigenvalue. This type of degenera-

on this issue, we split the linear operator of the eigenvalug;,., \will be crucial throughout our analysis.

problem, Eq(8), into two operatorst::I:HcrN, where
~ [ Dyam- 0
H= ( M+m B A ) (9)
0 ~Dp-m* B

is self-adjoint and
. [2u? U2
NElowe - (10

contains the dependence on the nonlinear bound stagn
for small powersN acts as a perturbation o ForP=0 (or
o=0) we haveI::I:|, B=v;m and each row of Eq(8) is
equivalent to Eq(3). Hence, in the spectrum of operal@lr

Before we go on and look at the effects of the perturbation

N, it might be helpful to illustrate these considerations with
the example of Fig. 1. As mentioned above, with knowledge
of the eigenvalues of E@3) it is easy to construct the spec-

trum of the operatoI:|: each eigenvalue in Eq. (3) creates
a pair of eigenvalued=y—-8 and \=8- in the spectrum

of H. Figure 3 shows the construction of the spectrum for
two different choices ofB. For the vortex state withs
=711 [s€e Fig. 8a)], the discrete eigenvalues and the two
continua are clearly separated. The eigenvalues attached to

the left axis belong to the first row of operatdr while those
appendant to the right axis belong to the second one. On the
contrary, for the multihumped state witB=1y,, [see Fig.
3(b)], some of the discrete eigenvalues are now embedded in

all the linear modes of the waveguide structure are reprothe continuum. So formally we have a degeneration between

duced twice. The solutions of the eigenvalue problem

continuous and discrete eigenvalues. This degeneration is
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" o0 [VRs1=-20 V(R< 1) =—20|A 4x10° T 31 A A
] % [ = = +
i b
22 T
——— Yo+ P Mo+ 720 (Vw10 4+ Vs =Yook (o= ook
’Yl'o - ﬁ | - ‘Yl'tz + B L '.ZL/ L ".:I/ 1 P ,. \/:.‘L L ‘..'z g{IA'
< 0 0o » 6 %\ /i i1
i continuum for P=0
Yao—B T T, +P 1
20— B i
M I, ! T
écontinuun% v H 2 v v
NN 772727 2 axtor L

FIG. 4. The degeneracy of the embedded discrete eigenvalues is

20 V(R<1)=-20 lifted by the cubic nonlinearitfo=+1); the eigenvalues move to
V(R>1)=0 the complexA plane(\AA\=Re\, Jx=Im\). The nonlinear bound
P =10 state under consideration in this example is the multihumped state

Y1~ B emanating fromy, g (8= y2.0).

201 P F Ny
el Z//continuumy
Yip—B //

Ylﬂ_B.
<0 -‘1,1;,,3 hold, because two eigenvalues of operdtdrave to be de-
generated first, before the pair can move to the complex
“hu+P plane. The pairwise appearance of eigenvalues is, to our
/continuum% “To+P knowledge, generic for conservative, Hamiltonian systems.
b) -20- Py, / L_20

IV. STABILITY CRITERION FOR LOW-POWER BOUND

FIG. 3. Eigenvalues of Eq11) for two different choices of. STATES

Two spectra of Fig. 1 are superimposed. One spectrum is shifted by

an amount ofg downwards(left axis); the other one is mirrored The above arguments allow us to formulate a stability

(A—=\) and shifted by an amount ¢f upwards(right axis. In (@  criterion for low-power nonlinear bound states of E2). If

the discrete and the continuous eigenvalues stay separatéo); in g certain localized linear mod®; . of Eq. (3) with eigen-
oo

we obserye some discrete eigenvalues embedded in the continuupg ;e Yiom fulfills

(dashed lines oo

due to the fact that Eq11) is composed of twalecoupled %'yj’M < ¥j,m, for all j,M, (12

equations. When we introduce the perturbatinthe latter

property does no longer hold. . the corresponding nonlinear bound staig  is linearly
If we start with the spectrum of the operatérand switch  stable for small powers. On the contrary, if the criter{@g)

on the perturbatiorlﬂ, we expect that eigenvalues ieif will is not fulfilled, an arbitrary small nonlinearity can lift the

shift. In particular, any degeneration between discrete eigerdegeneracy in the spectrum of operatdsy shifting the two
values and continuous eigenvalues, as described aboveigenvalues to the complex plane and leading thereby to the
should be lifted. Note that trivially degenerated eigenvaluesnstability of the nonlinear bound state. As a direct conse-
(M’ —-M") will not split, since the generic symmetry is not quence of this criterion, the ground state wjghemanating
changed by the nonlinearity. In contrastto the operatot. ~ from 10 is always stable. Figure 4 shows an illustrative
is not self-adjoint, so eigenvalues can become complex. Bugxample of this destabilization mechanism tor +1. Note
sincel is real, this can only happen in pais, \*). This that the criterion(12) applies to both focusingo>0) and

property, therefore, implies that two eigenvalues have to b&€focusing(a <0) nonlinearities. _
degenerated first, before the pair can move to the complex Before proceeding further, it might be helpful to illustrate
plane and destabilize the nonlinear bound state under conth€ criterion(12) in the picture of four-wave mixing. Here,
sideration So, on the one hand, degeneration of two eigenVe consider partially degenerate four-wave mixing: A strong

values is necessary for destabilization. On the other hand, w@UMP wave” with wave numbek, creates two sidebands
know about any possible degeneration just from looking afocated symmetrically at wave numbeks andk,, obeying
the spectrum of the operaté’r k;—ks=k,—k;, where we assume for definitendgs<k, (see,

The same conclusion anolies to more general nonlinear'?'g" Ref[16]). Of course, the creation of sidebands requires
. . ; ppiies 1o 9 . fhe existence of such waves in the medium. Brought forward
ties and arbitrary dimensionality in E@2), provided the

equation features an “attractive” potential. The key point isto our system, the “pump wave" corresponds to the low-
q P . yp power nonlinear bound StatUjo,MozG)jo,Mo with k;=p8

thgt eigen\ialues of the perturk_)a.tiorl (_)Qerehlcgmly appear i_n =~ YoMy Another_ mode of the potgntieﬂ)j'M_ can only _be
pairs (A, A'). An operator splittingL=H+oN as above is excited as a “third wavelks=y,; ) if there is a matching

always possible, wherél is independent of the nonlinear “fourth wave”, namely,@)yl:’,\,I with wave numberk,= 1y,
bound state and self-adjoint. Then, our arguments using di&zVJo’Mo_ y;m- If the stability criterion(12) is fulfilled, no

crete eigenvalues of operatﬁrembedded in the continuum matching “fourth wave” exists. Hence, the “third wave” can-
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not grow and cause instability of the nonlinear bound statenodes must converge tolacalizedeigenfunction of the op-
Uj,m,- On the contrary, if the criterion is not fulfilled, we erator H with discrete eigenvalue embedded in the con-
always find a matching “fourth wave” in the continuum. tinuum. Otherwise, ma®U,|?> would jump from C+#0 to

To clear up the effects of the nonlinearity, we consider thezero for powerP— 0, because delocalized eigenfunctions
asymptotics of unstable eigenmodesgenfunctions of op- cannot keep a finite power integral while having nonzero
erator L with complex eigenvaluex, ImA<0) with amplitude. Conversely, since the perturbations become local-
limp_oRe\ —X\o> 7 m, and O<[ImA[<\o, IMA<O (the ized in one componentsU;) and delocalized in the other
caseno< -7 u, Can be treated in a similar waySince in  ON€(Uy) in the limit P— 0, instability at |‘(‘3W powersiec-
the linear limit[Eq. (11)] all eigenmodes are stable, we have essarilystarts from dlscre}e eigenvalues “embedded” in the
limp_olm\— 0. By solving Eq.(8) in the asymptotic regime continuum of the operatdf. Furthermore, with this knowl-
R—o and linearizing the exponential arguments with re-edge, we can specify the above constaxgs YiM™ YigMo

spect to I we find and C=max®; y|* with f|®j,M|2RdR!:1.

1 J o Ima
oU; ~ \,_EGXPK_ VRex + 5 -1 2JRer + ,B)R] (13 B. Dependence of mappU,|? on |ImA|

For |Im\|< )\, all the mass ofsU, lies at large distances
1 o Im\ R—w, and with Eq. (14) we are able to compute
U, ~ —=exp| | —iVRe - B+ ——=|R|, (14 5 . , P
VR 2VRer - B J|0U,?’RdR~ 1/|Im\|. Since we have fixed|sU,|?’RdR:1,
the previous estimate implies that

where both componentdU; and 8U, are localized(finite
power integral. This is worth noticing, since in contrast to max 8U,|2 ~ |ImA]. (18)
8U4, the componentbU, is delocalized in the linear limit

Im\=0 (P=0 or ¢=0). Due to the nondiagonal elements of Besides, if we remember that E@) is a linear differential
the operatoN, we can conclude that bo#U, andsU, have ~ €quation, it is obvious that there exists a Green’s function
nonzero norm. More precisely, it is possible to show that G(R,R’) with

Im\ f (|8U4[2 - |8U,DRdR= 0 (15) SU,(R) = f G(RR)IU(R)?8Uy(RHR'AR,  (19)
(see the Appendix for detajlend therefore which means
. 2
f 18U, [2RdR= J |6U,2RARE L, (16) maX dU| ~ o max®. (20

Hence, we obtain

|
Henceforth the symbol signifies that the power integrals of M| 2
86U, and 8U, can be set equal to unity without loss of gen- V[imA] ~ o maxU*, @D
erality, by virtue of the linear nature of the equations whichso the growth ratéimx| of the unstable eigenmode is pro-
these perturbations satisfy. By doing so, E§6) provides portional to the squared nonlinearity.
useful information on the maximum of their amplitude in the  |n order to express this dependency in terms of the “soli-
transverse plane. Together with the asymptofiegs. (13)  ton parameter)3, we may perform a perturbative analysis in
and (14)], we are now able to evaluate the dependency othe limit |o| <1, similarly to Refs.[9,10. We expand the
max U, |2 and maxsU,|? on |Im\| <\, which will allow us  nonlinear bound state as

to deduce further results.
U=0+cU?+0(c? (22)

A. Dependence of mapsU,|? on [ImA| and

Let us have a look at Eq13). Since the real part of the B=y+aBY+0(?), (23)
exponent vRe\+g8R is independent of Im, we can con-
clude that 6U,(R)=0 at large distanceR>1/VRe\+ . where® =0; v andy=y; v, satisfy Eq.(3). Plugging the
Hence, the entire “mass” 0bU, is concentrated at finite ansatzy=U exp(iM ®+iBZ) into Eq.(2), it is readily found

distances, whert) #0 andV#0. Sincef|5Ul|2RdR!:1, we that
have thus

4
ma)46ul|2 ~ C, (17) f @ RdR
. _ BY = ~ max ©2. (24)
whereC is anonzeroconstant independent of hkn 5
Equation(17) implies that the criterioni12) is indeedsuf- O°RdR

ficient for small powers: For a vanishing nonlinearity, we
have Im\=0. For continuity reasons, these unstable eigenHence, with Eq(23) we have

016614-5
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401 [vrR<1)=-Vv, -~ 40 Z-783
30 [VR>1=0 “L30 e
>20- T8
10 -10 -1 0 1
0 = . —-0
0 10 20 30 40

FIG. 5. Eigenvaluey versus the depth of the step potenwaior
the linear mode®, o, O ;, and®, (. Solid lines indicate a free-of-

degeneration spectrum of operatéyr domains with discrete eigen-
values embedded in the continuum are specified in dotted lines. The
dashed lines show the absolute values of the embedded eigenval

\ of Eqg. (11).

B— 7y~ o max0?.

For small|a|, thus max®?~ max U? [see Eq(22)], the non-

linearity depends on the “soliton parameter” as

o maxU?~ B-y.

Combining Eqs(21) and(26) we get

[ImA| ~ (8- )%

The need that eigenvalues of opera}dIave to be degen- 1, o (multihumped state(see Fig. 2 Figure 5 shows the
erated first before moving to the complex plane and causeegions of degenerated of Eq. (11) for the three linear

-1 0 1
SFIG. 7. The vortex nonlinear bound stdfe=1, o=1: instability

or B=2.3 andVy=8 (row I); and stability for3=11 andV,=20
(row 1I).

-1 0 1 -1 0 1

instability yields a sufficient condition for stability of low-
power nonlinear bound states in the present framework.
However, determining compellable analytical arguments
showing that the embedded discrete eigenvalues of the op-

eratorH alwayslead to complex eigenvalues for the operator

L (unstable eigenmodgss still an open issue. Nevertheless,
in the numerical examples discussed below we always ob-
serve this destabilization mechanism.

V. NUMERICAL RESULTS

Let us return to our example, the radial step potential, and
check the above theoretical predictions. We will concentrate
on the “solitons” emanating fror, ; (vortex stat¢and from

modes®; o, ©; 5, and ®,,. Up to a certain depth of the

107 R<1)--8 r18 cpnfining potgntial\/, the stability criterion(lZ) is not ful-
81 [vr>1)=0 ! filled for the higher-order modes. At t_h|s depth, th_e last “em-_
— oo i‘1-2 bedded eigenvalue” leaves the continuum. In this context it
o 61 los 8 is important to point out that the above destabilization pro-
4- g cess imnotdue to weak linear guiding of the respective “soli-
N m=1_-~ Fo.4 ton.” If this were the case, we would observe a certain non-
_m=1 - i zero critical power, below which the “soliton” would be
a) 0 075“' g == 15 : 2-5L° stable. In contrast to this scenario, the destabilization appears
’ B ’ for arbitrary small power.
10- 1.6 Since the degeneration of the eigenvalues of (&d) in-
V(R<1)=-20 A volves the continuum, the related unstable eigenmodes are
B NR>1=0 m=1,c" r1.2 stretched over a large area, especially for very small powers.
61 =1 jor=1 s - Therefore, conventional solver for E@3), like, e.g., the
e 4 .’0'83—3 NAG routine Fo2ecr[17], failed due to the necessity of a
:—0.4 very large computational window. We worked around this
27 " E problem in solving Eq(6) directly with a beam-propagation
b) O T r b . +0 method(Crank-Nicholsoh and transparent boundary condi-
9 \10 11 12 13 tions.
stable B

To confirm the results of our stability analyses, we present

FIG. 6. Soliton powerP versus soliton parametgs for the  full 2D simulations illustrating the decay of unstable low-
vortex stateM =1 (solid line). The dashed line shows the computed power vortex and multihumped “solitons.” It turns out that,
growth rate|/lm\| of the unstable eigenmode. ) 3y, 0-7,,=>0,  at least for the examples presented here, the final state is
the vortex nonlinear bound state is unstable, whereas ith correlated with the dominant unstable eigenmdldere the
2y1.0-71,1<0 it is stable for small powers. ground statg
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"1 MrR<1)=-20 :'1'6
8- V(R>1)=0 :_1.2
6 c=-1ic= 4
a m-2; J 0 Bg
4 Lo
o e L
2120 m=g_-~" :°“'
0 N : L= L
a) 2 4
B
107 Wr<1)=--36 ,u;'1'6
84 [VR>1)=0 1o
6 c=-1ic=1 A E
o 4 0.8
44 / ‘lr -g
2] m= m=0, Fo.4
=1 m= ,/ m=2.1:
I === —L0
b) 12 14 16 18
b FIG. 9. The multihumped nonlinear bound stéfe=0, o=1:
107 V(R<1)=—44 5'1‘6 instability for 8=4.3 andV,=20 (row I); instability for 8=16 and
84 |V(R>1)=0 12 Vp=36 (row Il); and stability for8=24 andVy=44 (row III).
6 oc=1ic=1 I
o n m=0 'r0 88 As far as direct simulations are concerned, the first row in
oinod Fig. 7 shows the decay of the vortex “soliton” wiF2.3
2.m=1 m (L] b from the potential depth selected in Figap Perturbed with
olzs=2-m0 . . HI 1% random amplitude noise &=0, the growing unstable
©) 18 20 2\ 24 26 eigenmod&m=1) destroys the “doughnut shape” of the vor-
p slahls tex. AtZ=77.5 andZ=78.3, respectively, we show two snap-

shots of the asymptotic behavior, which consists in a spin-
ning single-hump solution with a periodZ=1.7. This
single hump is nothing else but the nonlinear ground state
U, o, where additional rotation is induced by a stable eigen-
mode withm=1 and\=2w/AZ~3.7. Because we are in the
low-power regime, we can identify the connection of this
eigenmode with®, ;, the linear vortex state in E¢3). In-
deed, forVy=8 we find\ =~3.7~= v, o— v, ; (see also Fig. b

The second row of Fig. 7 displays the numerical verification
A. Vortex state of the stability predicted for the vortex state wify=20.

We first discuss the vortex state. 1K6V;<13.6 (bound-
aries here correspond to the lower and upper bounds in Fig.
5 for eigenvalue degeneracy in the linft—0), we find B. Multihumped state
%'y1’0> 71,1- Hence, the degenerated eigenvalues of (E).

are Hy; o—v1,1). SO we can guess that the low-power non- ,
linear vortex state in this range b has an unstable eigen- [°f 16<Vo<31.2, Eq.(11) features four degenerated eigen-

mode withm=+1, so that either lia_odU;=0; 4 (M+m values £y, g~ v, related to the ground stat®, apd

=0) or limp_dU,=0, 4 (M-m=0). The real part of this +(y11~ 72,0 related to the vortex stat®, ;. For potentials
complex eigenvalue is approximateljReN|~y, o~y  deeper thaiV,=31.2 the degeneration of the vortex state first
With a deeper potential than the critical vaMig=13.6, this  vanishes, and witlv/,>39.2 the stability criterior(12) be-
instability is expected to disappear. In order to check theseéomes fulfilled. Again, we can confirm these behaviors with
predictions, a numerical stability analysis of the vortex stated numerical stability analysiésee Fig. 8 For V=20 the
was performed folV,=8 andV,=20. As expected, fok/,  multihumped branch is unstable for arbitrary small powers
=20 we observed a stable region of the vortex branch fofue to two unstable eigenmodes. The eigenmode linked to
small powers, whereas fof,=8 the branch becomes imme- the ground statem=0) possesses a substantially larger
diately unstable when the nonlinearity comes into plsge  growth rate, so we can expect this one to play the crucial role
Fig. 6). We successfully checked numerically the “instability in the decay of the multihumped nonlinear bound state
onset value” for the depth of the potentish=13.6. The full 2D simulations below. The unstable eigenmode associ-
“instability onset value” and the value at which the first dis- ated with the vortex state disappears for a deeper potential
crete eigenvalue just touches the continuum were observe®,=36), and choosingv,=44 we observe stability for a

to coincide. quite large range of soliton power.

FIG. 8. Soliton powerP versus parametep for the multi-
humped stateM =0 (solid line). The dashed lines show the com-
puted growth rateialm)\\ of the unstable eigenmodes. (H) 2 57%2.0
-v11=0 and 2 5720~ 71,0=0, the nonllnear bound state has two
unstable eigenmodes, whereas wit) 2720 711<=0 and 2 372,0
-7.0=0, it has one unstable eigenmo@e=0). In the case ofc)
;'yzo v11=<0 andzyzo v1,0=0, the multihumped state is stable
for small powers.

In the case of the multihumped state, Fig. 5 shows that,
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The decay of the multihumped “solitons” produced by VI. CONCLUSION
the potentials used in Figs(&@ and 8b) with 8=4.3 and
B=16 is shown in row | and row Il of Fig. 9, respectively. In summary, we have presented a sufficient stability cri-
Again we end up with the stable ground-state breathingerion for weakly nonlinear bound states, which only in-
due to stable eigenmodes with=0. The periods of oscilla- volves the linear eigenvalue probleP—0 or o=0).
tion, AZ=~0.45 andAZ=0.35, between the two extremal Simple knowledge of the eigenvalues associated with the
beam shapes shown in the respective last two pictures of tHmear modes of the potentiad allows us to predict the sta-
rows are compatible with the eigenvalues 14 and\=18:  bility of the nonlinear bound states of the extended NLS
we retrieve these values as the differengg— v, o comput-  equation(2). In spite of the fact that the criterion is valid for
able from Fig. 5. As expected, a sufficient depth=44) of  low-power solitons only, the example of a step potential
the potential stabilizes the higher-order nonlinear bound statshows that the present results may hold for wider ranges of
with M=0 (last row. power, both for focusing and defocusing nonlinearities.

APPENDIX: COMPONENTS OF UNSTABLE MODES HAVE EQUAL NORM
We prove the relation linf (|6U,]2-|8U,J)RdR=0 [Eq. (15)], using the notationa=6U,, b=6U,, lo=cU?, and A=\’
+i\” for convenience:

1 * . * .
)\”f(|a|2—|b|2)RdR:Ef{[a iN''a-c.c]-[b'irN'b-c.c]}RdAR

1 * 2 * * iy *
=5 f {[a (Dpsm—B-N +2lga+algp—c.c]-[b (-Dy_m+B-\N -2lg)b—b'lsa-c.c]}RdR

1 10 d . .14 d .
== a—-—|R—=Jat+talgp-cc.|+|b=-—=|R—=|b+blga-c.c.| (RAR
2i RJR\ dR RJR\ JR
where we used Eq8) and the fact that the quantitias, 3, V, 1o, andM?/R? are real valued. In the above equation, it is easy
to see thafa’lb-c.c]+[b'l;a—c.c]=0, which leaves us with the task to show that

[[ro(rie)i- v m 2 )r for=o
IR\ dR JR\ IR

where eitherf=a or f=h. Since ling_..f,dgf=0, integration by parts in both terms immediately shows the desired result.
Similar integral relations were previously establishedifl], in order to prove that a resonance of two localized eigen-
modes produce soliton instability in the context of the parametrically driven NLS equation.
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